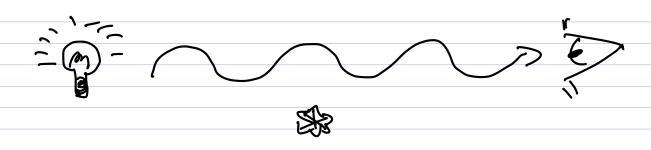
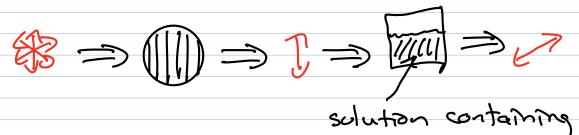

General structure [edit]


In the structure shown at the top of the page, **R** represents a side chain specific to each amino acid. The carbon atom next to the carboxyl group (which is therefore numbered 2 in the carbon chain starting from that functional group) is called the α –carbon. Amino acids containing an amino group bonded directly to the alpha carbon are referred to as alpha amino acids. These include amino acids such as proline which contain secondary amines, which used to be often referred to as "imino acids". [35][36][37]

Isomerism [edit]

The alpha amino acids are the most common form found in nature, but only when occurring in the L-isomer. The alpha carbon is a chiral carbon atom, with the exception of glycine which has two indistinguishable hydrogen atoms on the alpha carbon.^[38]

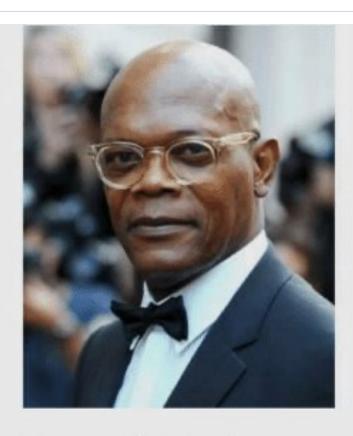
Therefore, all alpha amino acids but glycine can exist in either of two enantiomers, called L or D amino acids, which are mirror images of each other (*see also Chirality*). While L-amino acids represent all of the amino acids found in proteins during translation in the ribosome, D-amino acids are found in some proteins produced by enzyme posttranslational modifications after translation and translocation to the endoplasmic reticulum, as in exotic sea-dwelling organisms such as cone snails.^[39] They are also abundant components of the peptidoglycan cell walls of bacteria, ^[40] and D-serine may act as a neurotransmitter in the brain.^[41] D-amino acids are used in racemic crystallography to create centrosymmetric crystals, which (depending on the protein) may allow for easier and more robust protein structure determination.^[42]



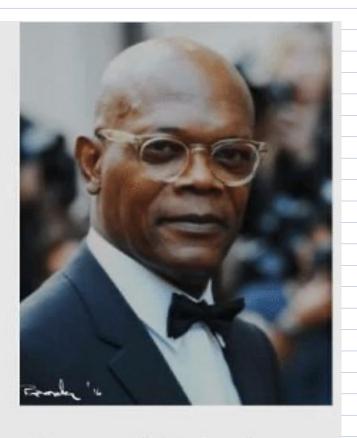
Polarizing filter -> makes it so only light in a single plane gets through

Plane
Polarized
Light

A sample of a chiral molecule will rotate the plane of plane polarized light an amount and direction that is characteristic for that molecule > Its enantioner will rotate the plane of plane polarized light by the same amount but in the OPPOSITE direction!


solution containing one enantioner of a chiral molecule

Clockwise rotation -> " +"
Counterclockwise rotation "-"



The 19 chival common amino acids (even cysteines)

The "L" designation of amino acids
is based on the structural relationship
to (L)-(-)-glyceraldehyde

Samuel-L-Jackson

Samuel-**D**-Jackson

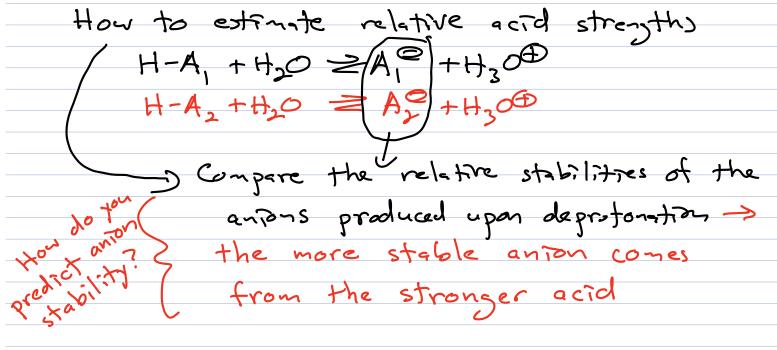
I hope this goes chiral

H₃C
$$\overset{:O:}{\overset{:O:}}{\overset{:O:}{\overset{.S}{\overset{.S}{\overset{.S}{\overset{.S}{\overset{.S}}{\overset{.S}}{\overset{.S}{\overset{.S}{\overset{.S}{\overset{.S}}{\overset{.S}{\overset{.S}}{\overset{.S}}{\overset{.S}}{\overset{.S}}{\overset{.S}}{\overset{.S}}}{\overset{.S}}{\overset{.S}}{\overset{.S}{\overset{.S}}{\overset{.S}}{\overset{.S}}{\overset{.S}}{\overset{.S}}}{\overset{.S}}}{\overset{.S}}{\overset{.S}}{\overset{.S}{\overset{.S}}{\overset{.S}}{\overset{.S}}{\overset{.S}}{\overset{.S}}{\overset{.S}}}{\overset{.S}}{\overset{.S}}{\overset{.S}{$$

At equilibrium:
$$K_{\text{equilibrium}} = \frac{[\text{Products}]}{[\text{Reactants}]} = \frac{[\text{CH}_3\text{CO}_2^{\bigcirc}] [\text{H}_3\text{O}^{\bigcirc}]}{[\text{CH}_3\text{CO}_2\text{H}] [\text{H}_2\text{O}]}$$

Equilibrium Constant \mathcal{I} Assume: $[H_2O] = 55 \text{ M}$ and does not change

Acid Constant $K_{a} = K_{\text{equilibrium}} [H_{2}O] = K_{\text{equilibrium}} [55 \text{ M}]$


$$K_{\rm a} = \frac{[{\rm CH_3CO_2^{\scriptsize \bigcirc}}] [{\rm H_3O^{\scriptsize \bigcirc}}]}{[{\rm CH_3CO_2H}]}$$
 $pK_{\rm a} = -\log K_{\rm a}$

A stronger acid has a ______ value of pK_a

A weaker acid has a $\frac{1}{1}$ value of pK_a

General Rule

All acid-base reactions favor formation of the weaker acid

- 2 important principles for predicting anion stability
- 1) Negative charge (Θ) is neutralized by nuclear (F) charge.
- 2) Delocalizing negative charge (3) over qual larger area is better. -> Golden Rule #5

Rules for anion stability -The anion is more stable when the negative charge (O) is: a) On a more electronegative element (Principle) Periodiz Table (across a single row) b) On a larger atom (Principle 2) J Periodic Table (down a single column) c) On an atom with more "s" character to its hybridization (sp > sp2 > sp3) closer to the nucleus anion stability (Principle 1) d) stabilized by resonance delocalization. (Principle 2) e) Stabilized by the inductive effect (Principles | and 2) (Principles 1 and 2) (nearby electroneyatik

through signing bonds

Operates (atoms attrac) charge and therefore I spread the charge onto more atoms

Examples

Rule a)

EX.

H-0-H

PK=15.7

more stable

H-W-17 17 pKq=38

O mak electronegative

Rule b)

(Only compare about in same column of the Periodic Table)

PKa

3.5

H-Ce

H-Br H-I

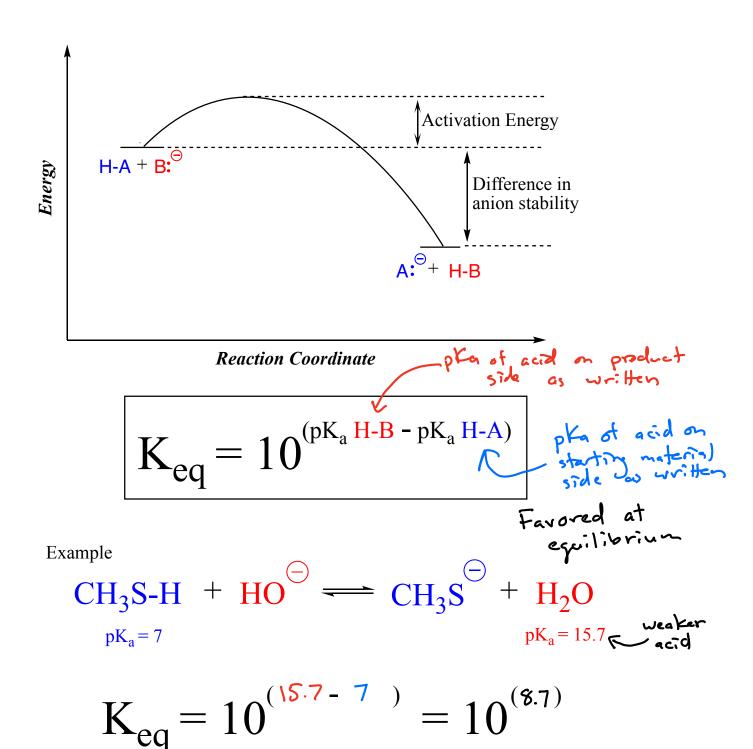
larger ion

acid strength

Rule c)

H H

H-C-C-H


H H

$$PKq = 50$$
 $PKq = 2T$
 $PKq = 50$
 $PKq = 2T$
 $PKq = 2T$
 $PKq = 50$
 $PKq = 2T$
 $PKq = 2T$
 $PKq = 50$
 $PKq = 2T$
 $PKq = 2T$

Resonance Effect Delocalization Rule e) Rule d) anion stability acid strength

Rules d) and e)

Assume A: $\stackrel{\bigcirc}{\bullet}$ is more stable than B: $\stackrel{\bigcirc}{\bullet}$

